Design of Torsion Reinforcement Er. Vivek Shah (www.ervivekshah.com.np)

Step I	Calculate the factored shear force, Bending Moment and Torsion Moment.
Step II	Calculate Mulim of given Section.
Step III	If $Mu \leq Mu$, lim
	$Ast = \frac{0.5f_{ck}}{f_y}bd\left[1 - \sqrt{1 - \frac{4.6 BMu}{f_{ck} bd^2}}\right]$
Step IV	Calculate Equivalent shear force and Equivalent nominal stress
	$V_{ue} = V_u + 1.6 \frac{T_u}{b}$
	$ au_{ve} = rac{V_{ue}}{bd}$
	$ au_{ve} \leq au_{c,max}$
Step V	Calculate τ_c from table 19 of IS 456 corresponding to Ast of step III and grade of
	concrete.
Step VI	a) If $ au_{ve} < au_c$, then longitudinal r/f is provided for Mu only and nominal shear r/f
	is provided.
	$\frac{A_{sv}}{hS_{v}} \ge \frac{0.4}{0.87f_{v}}$
	b) If $\tau_{ve} > \tau_c$, then longitudinal r/f is provided for $M_{e1} \& M_{e2}$ and shear
	reinforcement is to be designed for $(au_{ve} - au_c)bd$
Step VII	Longitudinal R/F design
	$M_{e1} = T \times LA = 0.87 f_y Ast(d - 0.42 X_u)$
	For X_u
	C=T
	Or, Compute Ast by formula if $M_{e1} < Mu$, lim
	$M_{e2} = 0.87 f_y Ast(d - d')$
Step VIII	Design for Transverse R/f
	- Assume Suitable size of Shear Reinforcement
	- Only the outer two legs of the stirrup to be consider for resistance of torsion.
	Check the shear r/f for spacing
	a) $V_{use} = 0.87 f_y Asv(d/sv)$

Design of Torsion Reinforcement

Er. Vivek Shah (www.ervivekshah.com.np)

 $(\tau_{ve} - \tau_c)bd \leq 0.87 f_v Asv(d/sv)$

Sv is calculated.

c) Asv =
$$\frac{T_u Sv}{b_1 d_1 (0.87 f_y)} + \frac{V_u Sv}{2.5 d_1 (0.87 f_y)}$$

$$0.87 f_y Asv\left(\frac{d}{sv}\right) = \frac{T_u}{b_1} + \frac{V_u}{2.5}$$

Asv = Area of 2 legged stirrups

 b_1 = c/c distance between the corner bar along the width.

 d_1 = c/c distance between the corner the corner bar along the depth.

Note: Here there is no restriction on characteristics strength of shear reinforcement i.e.

fy>415 (fy can be greater than 415 N/mm^2)

Shear reinforcement shall be closed stirrups.

c) Spacing between the stirrups shall not exceed minimum of ,

$$Sv \le \min of \left\{ x_1, \frac{x_1 + y_1}{4}, 300mm \right\}$$

 $x_1 = c/c$ distance of the legs of shear r/f along shorter dimensions.

 $y_1 = c/c$ distance of the legs of shear r/f along longer dimensions