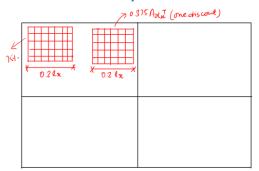
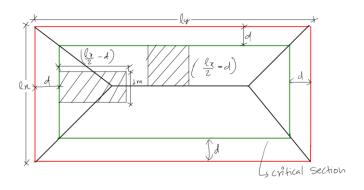

Design Steps of Two Way Slab

(www.ervivekshah.com.np)

Step 1: For Each of the nine cases obtained moment coefficient for mid span and for edge from IS456:2000.

Out of all design (Mx^+, Mx^-, My^+, My^-) , Mx^- is always maximum.


Step 2: Slab is divided into middle strip and edge strip along both the edges. Reinforcement calculated corresponding to design moment (Mx^+, Mx^-, My^+, My^-) is provided in middle strip only. Edge strip is provided with r/f only.


- Step 3: if slab is restrained from lifting at corners then torsion reinforcement is also provided to prevent the development cracks.
 - a) At two discontinuous edge 75% maximum positive reinforcement (0.75As t_x ⁺) is provided in two layers for a distance of 0.2 l_x in both directions.
 - b) At one discontinuous edge 50% of above value (i.e. $0.375 \text{ Ast}_{x}^{+}$) is provided in two layer for distance of $0.2l_x$ in both directions.
 - c) At continuous edge, no torsion reinforcement is required.

Design Steps of Two Way Slab

(www.ervivekshah.com.np)

Step 4: Check for shear and development length.

$$Vu = W_u \left(\frac{l_x}{2} - d\right)$$

$$\tau_v = \frac{V_u}{bd} = \frac{W_u \left(\frac{l_x}{2} - d\right)}{10^3. d}$$

For Safety in shear

$$\tau_v < K \tau_c$$

Here d is average value of effective depth.

$$\frac{d_x + d_y}{2}$$

Note: This designing in based on "yield line theory"